Четверг, 09.01.2025, 23:55
Главная Регистрация RSS
Приветствую Вас, Гость
Меню сайта
Категории раздела
Мои статьи [0]
Искусственный интеллект: введение [16]
Введение в теорию и общие вопросы искусственного интеллекта. Данный раздел дает краткую историю попыток понять принципы работы мозга и сущность интеллекта с позиций философии, психологии и других наук. Ведь как ни странно, искусственный интеллект - это наука, уходящая корнями как минимум к трудам Аристотеля.
Модели представления знаний [0]
Система искусственного интеллекта – это система, оперирующая знаниями о проблемной области. Без базы знаний систем искусственного интеллекта не существует. Для формализации и представления знаний разрабатываются специальные модели представления знаний и языки для описания знаний.
Автоматическая классификация [0]
Под классификацией понимается система группировки множества объектов, составленная на основе учета общих признаков этих объектов и закономерных связей между ними. Целью классификации является образование групп схожих между собой объектов, которые принято называть классами или кластерами.
Экспертные системы [0]
Направление по созданию вычислительных систем, в которые включены знания специалистов о некоторой узкой предметной области в форме базы знаний. Экспертные системы должны уметь принимать решения, схожие с решениями экспертов, в заданной предметной области.
Нейронные сети [0]
Нейронные сети, или, точнее, искусственные нейронные сети, представляют собой технологию, уходяшую корнями во множество других научных дисциплин. Они находят свое применение в таких разнородных областях, как моделирование, анализ временных рядов, распознавание образов, обработка сигналов и управление благодаря одному важному свойству – способности обучаться на основе данных при участии учителя или без его вмешательства.
Генетические алгоритмы [0]
Возникли в результате наблюдения и попыток копирования естественных процессов, происходящих в мире живых организмов, в частности, эволюции и связанного с ней естественного отбора популяций живых существ. Генетические алгоритмы применяются в системах искусственного интеллекта, оптимизации, искусственных нейронных сетях и в других отраслях знаний. Следует отметить, что с их помощью решаются задачи, для которых ранее использовались только нейронные сети.
Многоагентные системы [0]
В последнее десятилетие среди различных направлений искусственного интеллекта на одно из ведущих мест все больше претендуют исследования, объединяемые общим названием «многоагентные системы». В рамках этого направления задача или проблема решается путем построения сложной системы, состоящей из множества более простых взаимодействующих агентов.
Исследователи искусственного интеллекта [8]
Биографии ученых и исследователей, внесших значимый вклад в развитие и становление искусственного как отдельного научного течения.
Статьи на разные темы [0]
Здесь собраны статьи на разные темы не вошедшие в другие разделы.
Статистика

Онлайн всего: 2
Гостей: 2
Пользователей: 0
Форма входа
Поиск
Главная » Статьи » Искусственный интеллект: введение

Предыстория искусственного интеллекта. Часть II. Математик
В цикле статей «Предыстория искусственного интеллекта» кратко описана история развития научных дисциплин, которые внесли свой вклад в область искусственного интеллекта в виде конкретных идей, воззрений и методов.

Математика (период примерно с 800 года по настоящее время)

Философы сформулировали наиболее важные идеи искусственного интеллекта, но для преобразования его в формальную науку потребовалось достичь определенного уровня математической формализации в трех фундаментальных областях: логика, вычисления и вероятность.

Истоки идей формальной логики можно найти в работах философов древней Греции, но становление математической дисциплины фактически началась с трудов Джорджа Буля (1815-1864), который детально разработал логику высказываний, или булеву логику. В 1879 году Готтлоб Фреге (1848-1925) расширил булеву логику для включения в нее объектов и отношений, создав логику первого порядка, которая в настоящее время используется как наиболее фундаментальная система представления знаний. Альфред Тарский (1902-1983) впервые ввел в научный обиход теорию ссылок, которая показывает, как связать логические объекты с объектами реального мира. Следующий этап состоял в определении пределов того, что может быть сделано с помощью логики и вычислений.

Первым нетривиальным алгоритмом считается алгоритм вычисления наибольшего общего знаменателя, предложенный Евклидом. Исследование алгоритмов как самостоятельных объектов было начато Аль-Хорезми, среднеазиатским математиком IX столетия, благодаря работам которого Европа познакомилась с арабскими цифрами и алгеброй. Буль и другие ученые широко обсуждали алгоритмы логического вывода, а к концу XIX столетия уже предпринимались усилия по формализации общих принципов проведения математических рассуждений как логического вывода. В 1900 году Давид Гильберт (1862-1943) представил список из 23 проблем и правильно предсказал, что эти проблемы будут занимать математиков почти до конца XX века.

Для понимания возможностей вычисления очень важны понятия недоказуемости и невычислимости, гораздо большее влияние на развитие искусственного интеллекта оказало понятие неразрешимости. Грубо говоря, задача называется неразрешимой, если время, требуемое для решения отдельных экземпляров этой задачи, растет экспоненциально с увеличением размеров этих экземпляров. Различие между полиномиальным и экспоненциальным ростом сложности было впервые подчеркнуто в середине 1960-х годов в работах Кобхэма и Эдмондса. Важность этого открытия состоит в следующем: экспоненциальный рост означает, что даже экземпляры задачи умеренной величины не могут быть решены за какое-либо приемлемое время. Поэтому, например, приходится заниматься разделением общей задачи выработки интеллектуального поведения на разрешимые подзадачи, а не пытаться решать неразрешимую задачу.

Кроме логики и теории вычислений, вклад математиков в искусственный интеллект состоял в разработке теории вероятностей. Идея вероятности была впервые сформулирована итальянским математиком Джероламо Кардано (1501-1576), который описал ее в терминах результатов событий с несколькими исходами, возникающих в азартных играх. Теория вероятностей быстро стала неотъемлемой частью всех количественных наук, помогая использовать недостоверные результаты измерений и неполные теории. Пьер Ферма (1601-1665), Блез Паскаль (1623-1662), Джеймс Бернулли (1654-1705), Пьер Лаплас (1749-1827) и другие ученые внесли большой вклад в эту теорию и ввели новые статистические методы. Томас Байес (1702-1761) предложил правило обновления вероятностей с учетом новых фактов. Правило Байеса и возникшее на его основе научное направление, называемое байесовским анализом, лежат в основе большинства современных подходов к проведению рассуждений с учетом неопределенности в системах искусственного интеллекта.
Категория: Искусственный интеллект: введение | Добавил: balvt (19.11.2012)
Просмотров: 521 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *: