Четверг, 09.01.2025, 23:45
Главная Регистрация RSS
Приветствую Вас, Гость
Меню сайта
Категории раздела
Мои статьи [0]
Искусственный интеллект: введение [16]
Введение в теорию и общие вопросы искусственного интеллекта. Данный раздел дает краткую историю попыток понять принципы работы мозга и сущность интеллекта с позиций философии, психологии и других наук. Ведь как ни странно, искусственный интеллект - это наука, уходящая корнями как минимум к трудам Аристотеля.
Модели представления знаний [0]
Система искусственного интеллекта – это система, оперирующая знаниями о проблемной области. Без базы знаний систем искусственного интеллекта не существует. Для формализации и представления знаний разрабатываются специальные модели представления знаний и языки для описания знаний.
Автоматическая классификация [0]
Под классификацией понимается система группировки множества объектов, составленная на основе учета общих признаков этих объектов и закономерных связей между ними. Целью классификации является образование групп схожих между собой объектов, которые принято называть классами или кластерами.
Экспертные системы [0]
Направление по созданию вычислительных систем, в которые включены знания специалистов о некоторой узкой предметной области в форме базы знаний. Экспертные системы должны уметь принимать решения, схожие с решениями экспертов, в заданной предметной области.
Нейронные сети [0]
Нейронные сети, или, точнее, искусственные нейронные сети, представляют собой технологию, уходяшую корнями во множество других научных дисциплин. Они находят свое применение в таких разнородных областях, как моделирование, анализ временных рядов, распознавание образов, обработка сигналов и управление благодаря одному важному свойству – способности обучаться на основе данных при участии учителя или без его вмешательства.
Генетические алгоритмы [0]
Возникли в результате наблюдения и попыток копирования естественных процессов, происходящих в мире живых организмов, в частности, эволюции и связанного с ней естественного отбора популяций живых существ. Генетические алгоритмы применяются в системах искусственного интеллекта, оптимизации, искусственных нейронных сетях и в других отраслях знаний. Следует отметить, что с их помощью решаются задачи, для которых ранее использовались только нейронные сети.
Многоагентные системы [0]
В последнее десятилетие среди различных направлений искусственного интеллекта на одно из ведущих мест все больше претендуют исследования, объединяемые общим названием «многоагентные системы». В рамках этого направления задача или проблема решается путем построения сложной системы, состоящей из множества более простых взаимодействующих агентов.
Исследователи искусственного интеллекта [8]
Биографии ученых и исследователей, внесших значимый вклад в развитие и становление искусственного как отдельного научного течения.
Статьи на разные темы [0]
Здесь собраны статьи на разные темы не вошедшие в другие разделы.
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа
Поиск
Главная » Статьи » Искусственный интеллект: введение

История искусственного интеллекта
Можно считать, что история искусственного интеллекта начинается с момента создания первых ЭВМ в 40-х г.г. С появлением электронных вычислительных машин, обладающих высокой (по меркам того времени) производительностью, стали возникать первые вопросы в области искусственного интеллекта: возможно ли создать машину, интеллектуальные возможности которой были бы тождественны интеллектуальным возможностям человека (или даже превосходили возможности человека).

Следующим этапом в истории искусственного интеллекта являются 50-е годы, когда исследователи пытались строить разумные машины, имитируя мозг. Эти попытки оказались безуспешными по причине полной непригодности, как аппаратных, так и программных средств. В 1956 г. состоялся семинар в Стэнфордском университете (США), где был впервые предложен термин искусственный интеллект – artificial intelligence.

60-е года в истории искусственного интеллекта отметились попытками отыскать общие методы решения широкого класса задач, моделируя сложный процесс мышления. Разработка универсальных программ оказалась слишком трудным и бесплодным делом. Чем шире класс задач, которые может решать одна программа, тем беднее оказываются ее возможности при решении конкретной проблемы. В этот период началось зарождение эвристического программирования.

Эвристика - правило, теоретически не обоснованное, но позволяющее сократить количество переборов в пространстве поиска.


Эвристическое программирование – разработка стратегии действий по аналогии или прецедентам. В целом, 50-60 г.г. в истории искусственного интеллекта можно отметить как время поиска универсального алгоритма мышления.

Существенный прорыв в практических приложениях искусственного интеллекта произошел в 70-х гг., когда на смену поискам универсального алгоритма мышления пришла идея моделировать конкретные знания специалистов-экспертов. В США появились первые коммерческие системы, основанные на знаниях, или экспертные системы. Пришел новый подход к решению задач искусственного интеллекта – представление знаний. Созданы «MYCIN» и «DENDRAL» – ставшие уже классическими экспертные системы для медицины и химии. Обе эти системы в определенном смысле можно назвать диагностическими, поскольку в первом случае («MYCIN») по ряду симптомов (признаков патологии организма) определяется болезнь (ставится диагноз), во втором – по ряду свойств определяется химическое соединение. В принципе, этот этап в истории искусственного интеллекта можно назвать рождением экспертных систем.

Следующий значимый период в истории искусственного интеллекта – это 80-е года. На этом отрезке искусственный интеллект пережил второе рождение. Были широко осознаны его большие потенциальные возможности, как в исследованиях, так и в развитии производства. В рамках новой технологии появились первые коммерческие программные продукты. В это время стала развиваться область машинного обучения. До этих пор перенесение знаний специалиста-эксперта в машинную программу было утомительной и долгой процедурой. Создание систем, автоматически улучшающих и расширяющих свой запас эвристических (не формальных, основанных на интуитивных соображениях) правил – важнейший этап в последние годы. В начале десятилетия в различных странах были начаты крупнейшие в истории обработки данных, национальные и международные исследовательские проекты, нацеленные на «интеллектуальные вычислительные системы пятого поколения».

Сегодняшнее состояние исследований в этой области можно охарактеризовать словами одного из известных специалистов в области искусственного интеллекта, профессора Н.Г. Загоруйко:

«Дискуссии на тему «Может ли машина мыслить?» уже давно сошли со страниц газет и журналов. Скептики устали ждать, когда же сбудутся обещания энтузиастов. А энтузиасты без лишних разговоров, небольшими шагами продолжают двигаться в направлении горизонта, за которым они надеются увидеть искусственного собрата по разуму».
Категория: Искусственный интеллект: введение | Добавил: balvt (19.11.2012)
Просмотров: 516 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *: