Пятница, 24.01.2025, 12:05
Главная Регистрация RSS
Приветствую Вас, Гость
Меню сайта
Категории раздела
Мои статьи [0]
Искусственный интеллект: введение [16]
Введение в теорию и общие вопросы искусственного интеллекта. Данный раздел дает краткую историю попыток понять принципы работы мозга и сущность интеллекта с позиций философии, психологии и других наук. Ведь как ни странно, искусственный интеллект - это наука, уходящая корнями как минимум к трудам Аристотеля.
Модели представления знаний [0]
Система искусственного интеллекта – это система, оперирующая знаниями о проблемной области. Без базы знаний систем искусственного интеллекта не существует. Для формализации и представления знаний разрабатываются специальные модели представления знаний и языки для описания знаний.
Автоматическая классификация [0]
Под классификацией понимается система группировки множества объектов, составленная на основе учета общих признаков этих объектов и закономерных связей между ними. Целью классификации является образование групп схожих между собой объектов, которые принято называть классами или кластерами.
Экспертные системы [0]
Направление по созданию вычислительных систем, в которые включены знания специалистов о некоторой узкой предметной области в форме базы знаний. Экспертные системы должны уметь принимать решения, схожие с решениями экспертов, в заданной предметной области.
Нейронные сети [0]
Нейронные сети, или, точнее, искусственные нейронные сети, представляют собой технологию, уходяшую корнями во множество других научных дисциплин. Они находят свое применение в таких разнородных областях, как моделирование, анализ временных рядов, распознавание образов, обработка сигналов и управление благодаря одному важному свойству – способности обучаться на основе данных при участии учителя или без его вмешательства.
Генетические алгоритмы [0]
Возникли в результате наблюдения и попыток копирования естественных процессов, происходящих в мире живых организмов, в частности, эволюции и связанного с ней естественного отбора популяций живых существ. Генетические алгоритмы применяются в системах искусственного интеллекта, оптимизации, искусственных нейронных сетях и в других отраслях знаний. Следует отметить, что с их помощью решаются задачи, для которых ранее использовались только нейронные сети.
Многоагентные системы [0]
В последнее десятилетие среди различных направлений искусственного интеллекта на одно из ведущих мест все больше претендуют исследования, объединяемые общим названием «многоагентные системы». В рамках этого направления задача или проблема решается путем построения сложной системы, состоящей из множества более простых взаимодействующих агентов.
Исследователи искусственного интеллекта [8]
Биографии ученых и исследователей, внесших значимый вклад в развитие и становление искусственного как отдельного научного течения.
Статьи на разные темы [0]
Здесь собраны статьи на разные темы не вошедшие в другие разделы.
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа
Поиск
Главная » Статьи » Искусственный интеллект: введение

Искусственный интеллект и ведение игр
Поиск – это метод решения проблемы, в котором систематически просматривается пространство состояний задачи. Примеры состояний задачи: различные размещения фигур на доске в шахматах или же промежуточные шаги логического обоснования. Затем в этом пространстве альтернативных решений производится перебор в поисках окончательного ответа. Ученые утверждают, что эта техника лежит в основе человеческого способа решения различных задач. Отметим, что поиск является одной из фундаментальных проблем, занимающих разработчиков искусственного интеллекта.

Многие ранние исследования в области поиска в пространстве состояний совершались на основе таких распространенных настольных игр, как шашки, шахматы и пятнашки. Вдобавок к свойственному им интеллектуальному характеру такие игры имеют некоторые свойства, делающие их идеальным объектом для экспериментов. Большинство игр ведутся с использованием четко определенного набора правил: это позволяет легко строить пространство поиска и избавляет исследователя от неясности и путаницы, присущих менее структурированным проблемам. Позиции фигур легко представимы в компьютерной программе, они не требуют создания сложных формализмов, необходимых для передачи семантических тонкостей более сложных предметных областей. Тестирование игровых программ не порождает никаких финансовых или этических проблем. Поиск в пространстве состояний – принцип, лежащий в основе большинства исследований в области ведения игр.

Игры могут порождать необычайно большие пространства состояний. Для поиска в них требуются мощные методики, определяющие, какие альтернативы следует рассматривать. Такие методики называются эвристиками и составляют значительную область исследований искусственного интеллекта. Эвристика – стратегия полезная, но потенциально способная упустить правильное решение. Примером эвристики может быть рекомендация проверять, включен ли прибор в розетку, прежде чем делать предположения о его поломке, или выполнять рокировку в шахматной игре, чтобы попытаться уберечь короля от шаха. Большая часть того, что мы называем разумностью, по-видимому, опирается на эвристики, которые люди используют в решении задач.

Поскольку у большинства из нас есть опыт в этих простых играх, можно попробовать разработать свои эвристики и испытать их эффективность. Для этого не нужны консультации экспертов в каких-то темных для непосвященных областях, вроде медицины или математики. Поэтому игры являются хорошей основой для изучения эвристического поиска. Программы ведения игр, несмотря на их простоту, ставят перед исследователями новые вопросы, включая вариант, при котором ходы противника невозможно детерминировано предугадать. Наличие противника усложняет структуру программы, добавляя в нее элемент непредсказуемости и потребность уделять внимание психологическим и тактическим факторам игровой стратегии.
Категория: Искусственный интеллект: введение | Добавил: balvt (19.11.2012)
Просмотров: 465 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *: